2.51 Å, and much shorter than the sum of van der Waals radii, 4.15 Å (Pauling, 1960).

The structure of this entire group of atoms, namely Se₂Te^{II} Br₂Te^{IV} Br₄, is very similar to that found for the unit Br_2Se^{II} Br_2Se^{IV} Br_4 in $[(C_2H_5)_2N]_2Se_2Br_8$ (Hauge, Maroy & Odegard, 1988). In that structure, the terminal Se^{II}—Br bond lengths are 2.461(2) and 2.427(2)Å, while the bridging Se^{II}—Br bond lengths are 2.993 (2) and 3.010 Å; the bridging Se^{IV}—Br bond distances are 2.748 (2) and 2.720(2) Å, the bonds *trans* to them are 2.459(2)and 2.442 (2) Å and the third pair of Se^{IV}-Br bond distances is 2.522 (2) and 2.600 (2) Å. For Se and Br, the sum of the covalent radii is 2.31 Å and the sum of the van der Waals radii is 3.95 Å (Pauling, 1960). The dihedral angle between the Se^{II} Br₄ plane and the equatorial Se^{IV} Br₄ plane is 57°. The corresponding angles in the present structure are 58° for the planes that share Br(5) and Br(6), and 37° for the planes that share Br(11) and Br(12). The various DMSeU planes make dihedral angles with their Se₂-Te^{II} Br₂ planes that range from 68.0 to 71.4° .

(c) CH₃CN and CH₃OH. Four molecules of solvation were found in the structure, three CH₃CN and one CH₃OH. For CH₃CN, the average distances and angles are C—C = 1·10 (3) Å, C—N = 1·47 (2) Å and C—C—N = 173 (2)° and for CH₃OH, C—O = 1·40 (5) Å. All of these values appear to be normal. Each of the four solvent molecules has one close contact with one of the four available H atoms of the NH₂ groups of DMSeU. The N···H contacts from CH₃CN vary from 2·12 to 2·26 Å, while the angles C—N···H vary from 99 to 139°. The contact O1···H8*Ea* = 1·99 Å and C19—O1···H8*Ea* = 128°. All of these distances are considerably shorter than van der Waals contacts, and may be hydrogen bonds. The angles N···H—N vary from 151 to 167° and N8—H8*Ea*···O1 = 150°, all values that deviate considerably from 180°.

The authors wish to express their appreciation to the Robert A. Welch Foundation of Houston, Texas, for its financial assistance in support of this investigation.

References

- EIDE, J., FOSS, O., MAARTMAN-MOE, O., MABERG, O. & SCHEIE, A. (1987). Acta Chem. Scand. Ser. A, 41, 67–76.
- Foss, O., MAARTMAN-MOE, K. & MAROY, K. (1986). Acta Chem. Scand. Ser. A, 40, 685–694.
- HAUGE, S., MAROY, K. & ODEGARD, T. (1988). Acta Chem. Scand. Ser. A, 42, 56–60.
- HOPE, H. (1965). Acta Cryst. 18, 259-264.
- HUSEBYE, S. (1983). Proc. Fourth Int. Conf. Selenium and Tellurium, edited by F. J. BERRY & W. R. MCWHINNIE, pp. 298-378. Univ. of Aston, Birmingham, England.
- HUSEBYE, S. (1988). Phosphorus Sulfur, 38, 271-280.
- Mangion, M. M., Zingaro, R. A. & Meyers, E. A. (1975). Chem. Scr. 8A, 45-50.
- PAULING, L. (1960). The Nature of the Chemical Bond. Ithaca: Cornell Univ. Press.
- ROGERS, D. (1981). Acta Cryst. A37, 734-741.
- SHELDRICK, G. M. (1987). SHELXTL-Plus. Release 3.4 for Nicolet R3m/V crystallographic system. Nicolet Instrument Corporation, Madison, Wisconsin, USA.
- WRIGHT, W. B. & MEYERS, E. A. (1980). Cryst. Struct. Commun. 9, 1173-1180.

Acta Cryst. (1991). C47, 519-522

Structure of Bis(2,2'-bipyridine)dichlororhodium(III) Chloride Dihydrate

BY PASCUAL LAHUERTA,* JULIO LATORRE AND RAMÓN MARTÍNEZ-MÁÑEZ

Departamento de Química Inorgánica, Facultad de Química de la Universidad de Valencia, Dr Moliner 50, 46100 Burjasot (Valencia), Spain

and Santiago García-Granda* and Fermín Gómez-Beltrán

Departamento de Química Física y Analítica, Facultad de Química, Universidad de Oviedo, Julian Clavería s/n, 33006 Oviedo, Spain

(Received 12 May 1990; accepted 28 August 1990)

Abstract. [RhCl₂(C₁₀H₈N₂)₂]Cl.2H₂O, $M_r = 557.7$, triclinic, $P\overline{1}$, a = 12.9712 (5), b = 12.402 (1), c = 6.9998 (4) Å, $\alpha = 100.123$ (5), $\beta = 93.607$ (3), $\gamma =$ 90.668 (4)°, V = 1106.0 (1) Å³, Z = 2, $D_x = 1.67 \text{ Mg m}^{-3}$, Mo K α radiation (graphite crystal monochromator, $\lambda = 0.71069 \text{ Å}$), $\mu = 11.49 \text{ cm}^{-1}$, F(000) = 560, T = 293 K. Final R = 0.052 for 3633 independent observed reflections and 325 variables.

* Authors to whom correspondence should be addressed.

0108-2701/91/030519-04\$03.00

© 1991 International Union of Crystallography

The structure consists of cationic units with rhodium as the central atom in a pseudo-octahedral coordination. The crystal packing is completed by one chloride anion and two water molecules. The angles around the Rh atom range from 176.0 (2) to 177.2 (2)° for *trans* angles, and from 79.7 (2) to 98.3 (2)° for *cis* angles.

Introduction. Rh^{III} polyamine and polypyridine complexes can be used as potential precursors of Rh^{II} and Rh^I species (Kew, DeArmond & Hank, 1974; Mulazzani, Emmi, Hoffman & Venturi, 1981; Lilie, Simic & Endicott, 1975; Schwarz & Creutz, 1983; Anderson & Gregory, 1989; Comprehensive Coordination Chemistry, 1987). We have recently prepared cationic complex [RhCl(η^2 -PC)(η^2 -PCCl)the where $PC = (C_6H_4)PPh_2$, PCCl =(N-N)]SbF₆), $(o-ClC_{4}H_{4})PPh_{2}$ and N-N = 2.2'-bipyridine. 1.10phenanthroline, from the neutral complex RhCl₂(n^2 -PC)(n²-PCCl) (Lahuerta, Latorre, Martinez-Máñez, Paya & Tiripicchio, 1991). Cyclic voltammetry measurements indicate that $[RhCl(\eta^2-PC)(\eta^2-PCCl) (N-N)](SbF_6)$ reduces to an Rh^T species in two one-electron partially reversible processes. The inter-mediate Rh^{II} species can be detected by ESR spectroscopy; however, a disproportionation reaction prevents its isolation.

Following our investigation of Rh^{III} complexes containing polypyridine ligands, we have investigated thereaction between RhCl₂(η^2 -PC)(η^2 -PCCl) and 2,2'bipyridine. Surprisingly, we have observed that under mild reaction conditions (CH₂Cl₂ refluxing and a tenfold excess of bipyridine), cleavage of the metal—carbon bond occurs giving the well known compound [RhCl₂(bpy)₂]Cl.2H₂O (bpy = 2,2'bipyridine). We report here the crystal and molecular structure of the [RhCl₂(bpy)₂]Cl.2H₂O complex.

Experimental. Chemical reaction was carried out under dry argon by Schlenk-line procedures. Over a solution of RhCl₂(η^2 -PC)(η^2 -PCCl) (Lahuerta, Martinez-Máñez, Sanz, Cantarero & Torrens, 1988) in CH₂Cl₂ (100 mg, 0.137 mmol), was added 2,2'bipyridine (214 mg, 1.37 mmol). The mixture was refluxed for 1 h 45 min. The resulting yellow solution was evaporated to dryness under vacuum and the residue dissolved in CH₂Cl₂ and crystallized by slow diffusion of *n*-hexane into the CH₂Cl₂ solution. After four days yellow crystals of [RhCl₂(bpy)₂]Cl.2H₂O suitable for X-ray analysis were obtained. The reaction seems to be complicated. The only crystalline compound isolated was [RhCl₂(bpy)₂Cl.2H₂O (50%) yield). A crystal having approximate dimensions 0.1 $\times 0.1 \times 0.3$ mm was used for the structure determination.

Diffraction data were collected on an Enraf-Nonius CAD-4 single-crystal diffractometer using graphite-monochromated Mo $K\alpha$ radiation (λ = 0.71069 Å). Unit-cell parameters were determined from the angular settings of 25 reflections with 20 < $\theta < 25^{\circ}$. A total of 6950 reflections were measured. *hkl* range (-18, -17, 0) to (18, 17, 9) $0 < \theta < 30^{\circ}$, using the $\omega - 2\theta$ scan technique and a variable scan rate with a maximum scan time of 60 s per reflection. Intensity checked by monitoring three standard reflections every 60 min. Final drift corrections were between 0.99 and 1.02. Profile analysis was performed on all reflections (Lehmann & Larsen, 1974; Grant & Gabe, 1978). Empirical absorption correction applied using ψ scans (North, Phillips & Mathews, 1968), correction factors ranged from 0.74 to 0.99. Some double-measured reflections averaged, $R_{\text{int}} = \sum (I - \langle I \rangle) / \sum (I) = 0.027$, resulting in 5430 unique reflections, 3633 of which were 'observed' with $I > 3\sigma(I)$. Lorentz and polarization corrections were applied and the data reduced to $|F_o|$ values.

The structure was solved by Patterson interpretation using SHELXS86 (Sheldrick, 1985) which allowed us to locate the Rh atom. The remaining non-H atoms were located from successive Fourier syntheses. The structure was refined by least squares using SHELX76 (Sheldrick, 1976). Isotropic and anisotropic refinements followed by difference Fourier synthesis gave the location of some H atoms. the remainder of which were included in geometrically calculated positions. During the final stages of refinement, the positional and anisotropic thermal parameters for all non-H atoms were refined. The H atoms were refined riding on their parent atoms. For all H atoms, the isotropic parameters were fixed ($U = 0.09 \text{ Å}^2$). Final conventional agreement factors were R = 0.052 and wR = 0.057for 3633 'observed' reflections and 325 variables. The function minimized was $\sum w(|F_c| - |F_c|)^2$, w = 1/2 $[\sigma^2(F_o) + 0.00669(F_o)^2]$, with $\sigma^2(F_o)$ from counting statistics. The maximum shift/e.s.d. ratio in the last full-matrix least-squares cycle was less than 0.2. The final difference Fourier map showed no peaks higher than $1.2 \text{ e} \text{ } \text{Å}^{-3}$ or deeper than $-1.4 \text{ e} \text{ } \text{Å}^{-3}$. The maximum residual electron density was located near the Rh atom. Atomic scattering factors and corrections for anomalous dispersion for the Rh atom were taken from International Tables for X-ray Crystallography (1974, Vol. IV, pp. 99-101, 149-150). Geometrical calculations were performed with PARST (Nardelli, 1983).

Discussion. By reaction of RhCl₂(η^2 -PC)(η^2 -PCCl) and bidentate phosphines, the PCCl ligand is readily released to give the corresponding complex RhCl₂(η^2 -PC)(η^2 -P-P), P-P = bidentate phosphine (Lahuerta, Latorre, Martínez-Máñez & Sanz, 1988; Lahuerta, Latorre, Martínez-Máñez, Paya & Tiripichhio, 1991). In contrast, the same reaction with a bidentate nitrogen donor ligand such as bipyridine was more complicated and the PCCl and orthometallated phosphines were released from the $RhCl_2(\eta^2 - PC)(\eta^2 - PCCl)$ complex to give the title compound [RhCl₂(bpy)₂]Cl.2H₂O.

The complex $[RhCl_2(bpy)_2]Cl.2H_2O$ has been studied extensively; electronic spectra (Gillard, Osborn & Wilkinson, 1965), acid adduct formation (Gillard & Wilkinson, 1964), IR and Raman spectra (Kulasingam, McWhinnie & Miller, 1969; Martin, McWhinnie & Waind, 1961; McWhinnie, 1964), ¹H NMR spectra (Kulasingam, McWhinnie & Miller, 1969), a proposed mechanism of formation (Rund, Basolo & Pearson, 1964; Rund, 1968) and X-ray powder patterns (Berka, Gagne, Philippon & Wheeler, 1970) have been given. However, assignment of the geometric configuration for the $[RhX_2(bpy)_2]^+$ unit, where X is a halogen atom, as well as the phenanthroline analogue, has been unclear for some years.

Fig. 1 (ORTEP, Johnson, 1965) shows a perspective view of the molecule with the atomic numbering scheme. A list of atomic coordinates for the non-H atoms is given in Table 1.* Selected bond distances and angles are given in Table 2.

The structure consists of a mononuclear cationic unit with the Rh atom coordinated by two bipyridine ligands and two cis Cl atoms. The crystal packing is completed by one chloride anion and two water molecules. The water molecules contribute to the molecular packing forming a network of hydrogen bonds, which includes the chloride anion. The main

* Lists of structure amplitudes, anisotropic thermal parameters, torsion angles, full tables of distances and angles, and leastsquares-plane data have been deposited with the British Library Document Supply Centre as Supplementary Publication No. SUP 53515 (33 pp.). Copies may be obtained through The Technical Editor, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England.

Fig. 1. Perspective view and atomic numbering of the [RhCl₂(bpy)₂]⁺ unit.

Table 1. Fractional atomic coordinates and equivalent isotropic thermal parameters, for the non-H atoms, with e.s.d.'s in parentheses

$B_{eq} = (1/3) \sum_i \sum_i$	$\sum_{j} B_{ij} a_i^* a_j^* \mathbf{a}_i \cdot \mathbf{a}_j \cdot \mathbf{a}_j$
--------------------------------	--

x	у	z	B_{eq} (Å ²)
0.3705 (1)	0.2160(1)	0.1006(1)	2.07 (1)
0.4467 (1)	0.0816 (1)	0.2561 (2)	3.10 (4)
0.4373 (1)	0.3536(1)	0.3491 (2)	3.24 (4)
0.3044 (4)	0.0950 (4)	-0.1034 (7)	2.4 (1)
0.2417 (4)	0.1834 (4)	0.2320 (7)	2.6 (1)
0.3378 (5)	0.0596 (5)	-0.2788 (8)	2.9 (2)
0.2952 (6)	-0.0314 (5)	-0.4017 (9)	3.4 (2)
0.2139 (6)	-0.0879 (5)	-0.340(1)	3.5 (2)
0.1774 (5)	-0.0490 (5)	-0.1605 (9)	3.3 (2)
0.2235 (5)	0.0431 (5)	-0.0426 (8)	2.7 (2)
0.1881 (5)	0.0937 (5)	0.1461 (9)	2.6 (1)
0.1050 (5)	0.0548 (6)	0.232(1)	3.4 (2)
0.0775 (6)	0.1134 (6)	0.405 (1)	3.6 (2)
0.1318 (6)	0.2063 (6)	0.492 (1)	3.6 (2)
0.2141 (5)	0.2400 (5)	0.4028 (9)	2.1 (2)
0.3130 (4)	0.3349 (4)	-0.0341 (7)	2.4 (1)
0.4956 (4)	0.2484 (4)	-0.0438 (6)	2.3 (1)
0.2153 (5)	0.3732 (6)	- 0.026 (1)	3.4 (2)
0.1851 (6)	0.4577 (6)	-0.113(1)	3.8 (2)
0.2544 (6)	0.5088 (6)	- 0.212 (1)	3.8 (2)
0.3539 (5)	0.4703 (5)	-0.2230 (8)	3.0 (1)
0.3812 (5)	0.3837 (5)	- 0.1340 (8)	2.4 (1)
0.4857 (5)	0.3342 (5)	- 0.1368 (7)	2.5 (1)
0.5692 (6)	0.3725 (5)	- 0.2232 (8)	3.1 (2)
0.6610 (5)	0.3200 (6)	- 0.2185 (9)	3.3 (2)
0.6713 (6)	0.2315 (6)	-0.123 (1)	3.5 (2)
0.5869 (5)	0.1976 (5)	-0.038(1)	3.2 (2)
- 0.0370 (2)	0.2287 (2)	-0.1148 (3)	4.31 (5)
-0.0146 (6)	0.6018 (6)	0.733 (1)	6.7 (2)
0.8965 (6)	0.3890 (7)	-0.403 (1)	6.8 (2)
	x 0.3705 (1) 0.4467 (1) 0.4373 (1) 0.3044 (4) 0.2417 (4) 0.3378 (5) 0.2952 (6) 0.2139 (6) 0.2139 (6) 0.2235 (5) 0.2235 (5) 0.1881 (3) 0.1050 (5) 0.0775 (6) 0.1318 (6) 0.2141 (5) 0.3130 (4) 0.4956 (4) 0.2153 (5) 0.1851 (6) 0.2544 (6) 0.2544 (6) 0.2544 (6) 0.3539 (5) 0.4857 (5) 0.4857 (5) 0.5869 (5) -0.0370 (2) -0.0146 (6) 0.2956 (6)	x y $0.3705(1)$ $0.2160(1)$ $0.4467(1)$ $0.0816(1)$ $0.4467(1)$ $0.0816(1)$ $0.4373(1)$ $0.3536(1)$ $0.3044(4)$ $0.0950(4)$ $0.2417(4)$ $0.1834(4)$ $0.3378(5)$ $0.0596(5)$ $0.2952(6)$ $-0.0314(5)$ $0.2139(6)$ $-0.0879(5)$ $0.1774(5)$ $-0.0490(5)$ $0.2235(5)$ $0.0431(5)$ $0.2235(5)$ $0.0431(5)$ $0.2235(5)$ $0.0431(5)$ $0.1230(5)$ $0.0548(6)$ $0.0775(6)$ $0.1134(6)$ $0.0775(6)$ $0.1134(6)$ $0.0775(6)$ $0.1134(6)$ $0.1138(6)$ $0.2063(6)$ $0.2141(5)$ $0.2400(5)$ $0.3130(4)$ $0.3349(4)$ $0.4857(5)$ $0.3332(6)$ $0.1851(6)$ $0.4577(6)$ $0.2544(6)$ $0.5088(6)$ $0.3812(5)$ $0.3837(5)$ $0.3812(5)$ $0.3320(5)$ $0.4857(5)$ $0.3342($	x y z $0.3705 (1)$ $0.2160 (1)$ $0.1006 (1)$ $0.4467 (1)$ $0.0816 (1)$ $0.2561 (2)$ $0.4373 (1)$ $0.3535 (1)$ $0.3491 (2)$ $0.3044 (4)$ $0.0950 (4)$ $-0.1034 (7)$ $0.2417 (4)$ $0.1834 (4)$ $0.2220 (7)$ $0.3378 (5)$ $0.0596 (5)$ $-0.2788 (8)$ $0.2952 (6)$ $-0.0314 (5)$ $-0.4017 (9)$ $0.2139 (6)$ $-0.0879 (5)$ $-0.3401 (1)$ $0.1774 (5)$ $-0.0490 (5)$ $-0.1605 (9)$ $0.2235 (5)$ $0.0431 (5)$ $-0.44017 (9)$ $0.2235 (5)$ $0.0431 (5)$ $-0.4421 (9)$ $0.1881 (5)$ $0.0937 (5)$ $0.1461 (9)$ $0.150 (5)$ $0.0548 (6)$ $0.222 (1)$ $0.0775 (6)$ $0.1134 (6)$ $0.405 (1)$ $0.1318 (6)$ $0.2063 (6)$ $0.492 (1)$ $0.2133 (5)$ $0.3732 (6)$ $-0.026 (1)$ $0.181 (6)$ $0.2484 (4)$ $-0.0341 (7)$ $0.4956 (4)$ $0.2488 (6)$ $-0.212 (1)$ $0.3130 (4)$ $0.3349 (4)$ $-0.0341 (7)$ $0.4956 (4)$ $0.2488 (6)$ $-0.212 (1)$ $0.3539 (5)$ $0.4703 (5)$ $-0.2230 (8)$ $0.3812 (5)$ $0.3837 (5)$ $-0.1340 (8)$ $0.4857 (5)$ $0.3337 (5)$ $-0.1340 (8)$ $0.4857 (5)$ $0.3230 (6)$ $-0.2123 (8)$ $0.6610 (5)$ $0.22315 (6)$ $-0.1238 (7)$ $0.5692 (6)$ $0.3725 (5)$ $-0.2232 (8)$ $0.6610 (5)$ $0.2287 (2)$ $-0.1138 (3)$ $0.5692 (6)$ $0.$

Table 2. Selected distances (Å) and bond angles (°) with e.s.d.'s in parentheses

Rh-Cl(1)	2.341 (2)	Rh-Cl(2)	2.328 (2)
Rh-N(1)	2.022 (5)	RhN(2)	2.027 (6)
RhN(3)	2.011 (5)	RhN(4)	2.037 (5)
N(1) - C(1)	1.330 (8)	N(1)C(5)	1.354 (8)
N(2)-C(6)	1.333 (8)	N(2) - C(10)	1.347 (8)
N(3) - C(11)	1.360 (8)	N(3)-C(15)	1.361 (8)
N(4)—C(16)	1.345 (8)	N(4)—C(20)	1.350 (8)
N(3)—Rh—N(4)	80.3 (2)	N(2)—Rh—N(4)	177-2 (2)
N(2)—Rh— $N(3)$	97.8 (2)	N(1)—Rh— $N(4)$	98.3 (2)
N(1)—Rh— $N(3)$	93.1 (2)	N(1)—Rh— $N(2)$	79.7 (2)
Cl(2)—Rh—N(4)	85.7 (2)	Cl(2)—Rh—N(3)	87.6 (2)
Cl(2)—Rh—N(2)	96.3 (2)	Cl(2)—Rh—N(1)	176.0 (2)
Cl(1)—Rh—N(4)	96.8 (2)	Cl(1)—Rh—N(3)	176.8 (2)
Cl(1)—Rh—N(2)	85.2 (2)	Cl(1)—Rh—N(1)	88.6 (2)
Cl(1)—Rh— $Cl(2)$	90.86 (6)	RhN(1)C(5)	114.0 (4)
Rh-N(1)-C(1)	126.0 (4)	C(1) - N(1) - C(5)	119.8 (5)
Rh-N(2)-C(10)	124-4 (4)	Rh-N(2)-C(6)	115-1 (4)
C(6) - N(2) - C(10)	120.2 (5)	Rh-N(3)-C(15)	115.6 (4)
Rh-N(3)-C(11)	126.0 (4)	C(11)-N(3)-C(15)) 118·3 (5)
Rh-N(4)-C(20)	125.3 (4)	Rh-N(4)-C(16)	114.8 (4)
C(16)—N(4)—C(20) 119.6 (5)		
H110Cl(3)	2.469 (7)	H120…Cl(3) ⁱⁱⁱ	2.188 (9)
H210…O(2) ⁱⁱ	1.89 (1)	H220…O(1) ^{iv}	2.32 (1)
	<i>.</i>		

Symmetry code: (i) -x, -y + 1, -z + 1; (ii) -x + 1, (iii) x + 1, y, z; (iv) x + 1, y, z - 1.

features of this hydrogen bonding are shown in Table 2.

Obviating the angular distortions owing to the rigidity of the bipyridine ligands, the geometry around the central atom may be regarded as octahedral. The trans angles around the Rh atom range from 176.0 (2) to 177.2 (2)°, and the *cis* angles from 79.7 (2) to 98.3 (2)°.

The atoms N(1), N(2) and C(1)-C(10), defining the bipyridine ligand, are planar within ± 0.08 Å, and the Rh atom lies 0.2 Å from the mean plane. The other bipyridine ligand, defined by the N(3), N(4) and C(11)-C(20) atoms, is planar within ± 0.02 Å, the Rh atom being 0.2 Å from this plane. The mean planes make a dihedral angle of 79.0 (1)°.

Both the bipyridine-ligand rigidity and the Rh—N equilibrium distance result in the angles Rh—N(1)— C(5), Rh—N(2)—C(6), Rh—N(3)—C(15) and Rh— N(4)—C(16) being smaller than Rh—N(1)—C(1), Rh—N(2)—C(10), Rh—N(3)—C(11) and Rh— N(4)—C(20), as well as in the N—Rh—N angles differing from the theoretical value of 90°.

For the bipyridine ligands, the C—C bond distances range from 1.352 (11) to 1.494 (9) Å, averaging 1.389 (9) Å. The N—C bond distances range from 1.330 (8) to 1.361 (8) Å, averaging 1.347 (8) Å.

References

- ANDERSON, J. E. & GREGORY, T. P. (1989). Inorg. Chem. 28, 3905–3909.
- BERKA, L. H., GAGNE, R. R., PHILIPPON, G. E. & WHEELER, C. E. (1970). Inorg. Chem. 9, 2705–2709.
- Comprehensive Coordination Chemistry (1987). Vol. IV. Oxford: Pergamon Press.
- GILLARD, R. D., OSBORN, J. A. & WILKINSON, G. (1965). J. Chem. Soc. II, pp. 1951–1965.
- GILLARD, R. D. & WILKINSON, G. (1964). J. Chem. Soc. II, pp. 1640–1646.

GRANT, D. F. & GABE, E. J. (1978). J. Appl. Cryst. 11, 114-120.

- JOHNSON, C. K. (1965). ORTEP. Report ORNL-3794. Oak Ridge National Laboratory, Tennessee, USA.
- Kew, G., DEARMOND, K. & HANK, K. (1974). J. Phys. Chem. 78, 727–734.
- KULASINGAM, G. C., MCWHINNIE, W. R. & MILLER, J. D. (1969). J. Chem. Soc. A, I, pp. 521–524.
- LAHUERTA, P., LATORRE, J., MARTÍNEZ-MÁÑEZ, R., PAYA, J. & TIRIPICCHIO, A. (1991). J. Chem. Soc. Dalton Trans. Submitted.
- LAHUERTA, P., LATORRE, J., MARTINEZ-MAÑEZ, R. & SANZ, F. (1988). J. Organomet. Chem. 356, 355-366.
- LAHUERTA, P., MARTINEZ-MAÑEZ, R., SANZ, F., CANTARERO, A. & TORRENS, F. (1988). J. Chem. Res. pp. 22–23.
- LEHMANN, M. S. & LARSEN, F. L. (1974). Acta Cryst. A30, 580-584.
- LILIE, J., SIMIC, M. G. & ENDICOTT, J. F. (1975). Inorg. Chem. 14, 2129–2133.
- MARTIN, B., MCWHINNIE, W. R. & WAIND, G. N. (1961). J. Inorg. Nucl. Chem. 23, 207–223.
- MCWHINNIE, W. R. (1964). J. Inorg. Nucl. Chem. 26, 15-19.
- MULAZZANI, Q. G., EMMI, S., HOFFMAN, M. Z. & VENTURI, M. (1981). J. Am. Chem. Soc. 103, 3362-3370.
- NARDELLI, M. (1983). Comput. Chem. 7, 95-98.
- North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351-359.
- RUND, J. V. (1968). Inorg. Chem. 7, 24-27.
- RUND, J. V., BASOLO, F. & PEARSON, R. G. (1964). Inorg. Chem. 3, 658-661.
- SCHWARZ, H. A. & CREUTZ, C. (1983). Inorg. Chem. 22, 707-713.
- SHELDRICK, G. M. (1976). SHELX76. Program for crystal structure determination. Univ. of Cambridge, England.
- SHELDRICK, G. M. (1985). SHELXS86. In Crystallographic Computing 3, edited by G. M. SHELDRICK, C. KRÜGER & R. GODDARD, pp. 175–189. Oxford Univ. Press.

Acta Cryst. (1991). C47, 522-525

Structures of [1,3-Bis(diphenylphosphino)propane]tetracarbonylmolybdenum(0) (1) and [1,4-Bis(diphenylphosphino)butane]tetracarbonylmolybdenum(0) (2)

BY CHUEN-HER UENG* AND GWO-YUH HWANG

Department of Chemistry, National Taiwan Normal University, Taipei, Taiwan

(Received 19 April 1990; accepted 16 July 1990)

Abstract. (1) $C_{31}H_{26}MoO_4P_2$, $[Mo\{(C_6H_5)_2PC_3 H_6P(C_6H_5)_2(CO)_4],$ $M_r = 620.4$ orthorhombic, *Pnma*, a = 16.854 (4), b = 21.970 (4), c = 7.723 (2) Å, $V = 2860 (1) \text{ Å}^3$, $D_x =$ Z = 4, $D_m = 1.47$ (3), λ (Mo K α) = 0.7093 Å. 1.48 Mg m⁻¹ $\mu =$ 1248 Mg m^{-1} , F(000) = 1264, T = 298 K, final R =0.033 for 1871 observed reflections. (2) $C_{32}H_{28}MoO_4P_2$, $[Mo{(C_6H_5)_2PC_4H_8P(C_6H_5)_2} (CO)_{4}],$ $M_r = 634.3$, monoclinic, $P2_{1}/n$, *a* =

0108-2701/91/030522-04\$03.00

12.072 (2), b = 15.379 (5), c = 16.607 (5) Å, $\beta = 104.65$ (2)°, V = 2983 (1) Å³, Z = 4, $D_m = 1.36$ (3), $D_x = 1.35$ Mg m⁻³, λ (Mo K α) = 0.7093 Å, $\mu = 0.57$ mm⁻¹, F(000) = 1296, T = 298 K, final R = 0.032 for 3888 observed reflections. The molecular structures of both compounds are similar, but the numbers of the ring members are six in (1) and seven in (2). In the order of compound (1), (2), the following changes occur: P-Mo-P = 89.74 (4), 91.65 (4)°; cis C-Mo-C = 88.7 (2), 86.1 (2)°; trans C-Mo-C = 174.8 (3), 176.8 (2)°. The increase in

© 1991 International Union of Crystallography

^{*} To whom correspondence should addressed.